Vertex operators, symmetric functions, and the spin group Γn

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Operators for Standard Bases of the Symmetric Functions

Using the notation of [3], we will consider the power {pλ[X]}λ, Schur {sλ[X]}λ, monomial {mλ[X]}λ, homogeneous {hλ[X]}λ, elementary {eλ[X]}λ and forgotten {fλ[X]}λ bases for the symmetric functions. We will often appeal to [3] for proofs of identities relating these bases. These bases are all indexed by partitions, non-increasing sequences of non-negative integers. The i entry of the partition ...

متن کامل

Parking Functions and Vertex Operators

We introduce several associative algebras and series of vector spaces associated to these algebras. Using lattice vertex operators, we obtain dimension and character formulae for these spaces. In particular, we a series of representations of symmetric groups which turn out to be isomorphic to parking function modules. We also construct series of vector spaces whose dimensions are Catalan number...

متن کامل

Bosonization of vertex operators for Zn symmetric Belavin model and its correlation functions

Based on the bosonization of vertex operators for A (1) n−1 face model by Asai,Jimbo, Miwa and Pugai,using vertex-face correspondence we obtain vertex operators for Zn symmetric Belavin model,which are constructed by deformed boson oscilllators. The correlation functions are also obtained.

متن کامل

Shift Operators and Factorial Symmetric Functions

A new class of symmetric functions called factorial Schur symmetric functions has recently been discovered in connection with a branch of mathematical physics. We align this theory more closely with the s tandard symmetric function theory, giving the factorial Schur function a tableau definition, introducing a shift operator and a new generat ing function with which we extend to factorial symme...

متن کامل

Ribbon Operators and Hall-Littlewood Symmetric Functions

Abstract. Given a partition λ = (λ1, λ2, . . . λk), let λ rc = (λ2 − 1, λ3 − 1, . . . λk − 1). It is easily seen that the diagram λ/λ is connected and has no 2 × 2 subdiagrams which we shall refer to as a ribbon. To each ribbon R, we associate a symmetric function operator S. We may define the major index of a ribbon maj(R) to be the major index of any permutation that fits the ribbon. This pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1991

ISSN: 0021-8693

DOI: 10.1016/0021-8693(91)90177-a